
PipesFS: Fast Linux I/O in the Unix Tradition

Willem de Bruijn
Vrije Universiteit Amsterdam
w.de.bruijn@few.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam and NICTA

h.bos@few.vu.nl

ABSTRACT
This paper presents PipesFS, an I/O architecture for Linux
2.6 that increases I/O throughput and adds support for het-
erogeneous parallel processors by (1) collapsing many I/O
interfaces onto one: the Unix pipeline, (2) increasing pipe
efficiency and (3) exploiting pipeline modularity to spread
computation across all available processors.

PipesFS extends the pipeline model to kernel I/O and com-
municates with applications through a Linux virtual filesys-
tem (VFS), where directory nodes represent operations and
pipe nodes export live kernel data. Users can thus interact
with kernel I/O through existing calls like mkdir, tools like
grep, most languages and even shell scripts. To support per-
formance critical tasks, PipesFS improves pipe throughput
through copy, context switch and cache miss avoidance. To
integrate heterogeneous processors (e.g., the Cell) it trans-
parently moves operations to the most efficient type of core.

1. INTRODUCTION
With more than 8000 lines of code added, removed and mod-
ified daily [15], Linux is the largest single laboratory for
operating system development. At its core is a conserva-
tive architecture, however, that was developed decades ago
for time-sharing machines with relatively fast memory, slow
processors and even slower networks. Since then, commodity
computer architectures have grown more diverse and com-
plex. Multicore CPUs are widespread and manycore [1], per-
formance asymmetric [16], CPU/GPU hybrid (AMD Fusion,
Intel Larrabee) and heterogeneous architectures (STI Cell,
embedded SoCs) are in production or have been announced.
Collectively, we refer to these innovations as anycore proces-
sors: parallel resources that are difficult to fully exploit with
today’s monolithic applications.

At the same time, the main bottleneck in I/O processing
has moved to the memory system as peripheral I/O, such as
graphics pipelines and networks, eclipsed CPU growth, while
memory access latency failed to keep up (creating the“mem-
ory wall” [26]). To improve throughput, it is now essential
to avoid all unnecessary memory operations. Inefficient I/O
primitives exacerbate the effects of the memory wall by in-
curring unnecessary copying and context switching, and as
a result of these cache misses.

Contribution. We revisit the Unix pipeline as a generic
model for streaming I/O, but modify it to reduce overhead,
extend it to integrate kernel processing and complement it

with support for anycore execution. We link kernel and
userspace processing through a virtual filesystem, PipesFS,
that presents kernel operations as directories and live data as
pipes. This solution avoids new interfaces and so unlocks all
existing tools and languages for streaming I/O. In summary,
PipesFS holds the following attractive characteristics:

1. Unifies I/O processing by making all kernel IO
accessible through a virtual filesystem and all data
through Unix pipes. Using this single primitive for all
communication removes the need for domain-specific
interfaces and enables the following two advantages
system-wide.

2. Increases I/O throughput over stock Linux, by
reimplementing pipes as shared memory structures and
reducing copying, context switching and cache miss
overhead. Observed throughput gains are 2x for a sin-
gle pipe and up to 30x when copy avoidance is possible.

3. Optimizes I/O on anycore by automatically mov-
ing I/O filters to specialized cores (cryptographic logic,
programmable co-processors) when available and by
configuring such hardware below the OS interface, i.e.,
completely transparent to applications.

PipesFS is practical open source software, consisting of a
Linux 2.6 kernel module, userspace library and device drivers.
It can be downloaded from http://netstreamline.org/.

Outline. In the following section we introduce our applica-
tion domain and explain why the Unix pipeline is effective
in principle, but often shunned in practice. Then, we ded-
icate a section each to our three presented improvements:
section 3 discusses the virtual filesystem, section 4 presents
the pipe optimizations and section 5 the support for anycore
processors. At the end of each section we summarize the dif-
ferences with Linux and discuss to what extent the ideas can
be integrated. In section 6 we discuss related work. Finally,
we draw conclusions in section 7.

2. BACKGROUND
PipesFS targets streaming I/O applications, especially those
that span multiple hardware tasks, e.g., because they in-
volve IPC or spend a significant amount of time in kernel
tasks. Applications that fit this description are Unix tools
(which use pipes), network clients and servers (which require

55

significant protocol processing) and any application involv-
ing sequential access to peripheral hardware (cryptographic,
graphics, video and audio processing).

Throughout the paper we use a single example application to
clarify technical details and show practical utility. For this
purpose we choose a webserver for hosting static content,
because this application requires both application and kernel
processing, is memory bound (as long as data resides in the
disk-cache), makes use of all PipesFS’s advanced features
(multi-user pipes, splicing and hardware adaptation) and
needs no further introduction.

2.1 Unix pipes
Natural growth of application performance with advances
in processor technology has ended with the arrival of any-
core architectures. The transition particularly impacts I/O
applications, because the introduced parallelism intensifies
contention on the already overloaded memory system. To
make efficient use of modern computer architectures there-
fore requires a change in application design. The Unix de-
velopment model (or ’philosophy’ [9]) offers a proven alter-
native: build small filter programs that ”do one thing and do
it well” and connect these into larger, specific, applications
through clean, simple interfaces – the quintessential example
of which is the Unix pipe. Pipelines separate processing from
transport logic, clearing the path for structural optimization
of both. Compartmentalized logic can be mapped efficiently
onto of a diverse set of computer architectures, and a uni-
form communication primitive ensures that transport opti-
mizations (such as copy avoidance) are applied systemwide.
In this paper we show a number of such optimizations to the
basic pipe that together reduce I/O overhead by factors of
magnitude (2 to 30x).

Unix pipes hold a few key advantages over alternative pipeline
interfaces. Because the only shared interface is that of low-
level Posix system calls, they can be accessed from all ex-
isting tools and virtually any programming language. Us-
ing pipes in a novel domain therefore immediately unlocks
a large collection of tools (e.g., grep or gzip) for rapid
adaptation of applications. Second, because pipes are so
widespread (just not for high-speed I/O), the developer learn-
ing curve is less intimidating than for yet another interface.
Program structure can be more easily comprehended and fil-
ters can be debugged and optimized independently. Third,
the system scheduler can adapt scheduling of pipelined tasks
to fit local hardware. It can exploit the explicit structure
and modularity of pipelines to co-schedule filters so that
CPU utilization and cache hitrate are maximized on the
local combination of cores and caches, in ways that devel-
opers cannot because they lack this hardware information
at compile time. Most importantly, though, pipes are to be
preferred from an architectural point of view: as the basis
of the Unix development model, they have frequently shown
to improve code reusability and maintainability [9].

2.2 Linux practice
Why, then, do developers avoid pipes? First, compared
with local pointer arithmetic within a process, pipe based
IPC as currently implemented incurs considerable copying,
task switching and cache miss overhead. To avoid such
non-functional I/O overhead, developers are forced to re-

place modular designs based on these clean primitives with
monolithic tasks that employ explicit pointer handling and
domain-specific interfaces – duplicating code, increasing com-
plexity, and complicating scheduling. Indeed, in practice,
performance critical applications in Linux generally eschew
pipes, for instance for media processing (gstreamer, alsa)
and networking (netfilter). Second, Unix pipes are a userspace
primitive only, but especially I/O applications require sig-
nificant kernel processing, because they need to access pro-
tected hardware resources such as graphics processors and
network interfaces. Communication between the two envi-
ronments is an important source of transport overhead. As a
result, incompatible domain-specific interfaces have been de-
veloped to reduce cost for selected applications (e.g., send-
file, Linux netlink).

With PipesFS we avoid both pitfalls. We improve end-to-
end I/O performance by modifying Unix pipes to better
fit modern hardware: exchange pointers to avoid copying,
buffer data to avoid task switching, and adjust working-sets
to fit cache-sizes. Contrary to application logic, we enable
such optimizations systemwide and cleanly, because we ex-
ecute them behind the pipe interface. To integrate kernel
processing, PipesFS structures kernel tasks as yet another
pipeline and enables generic, efficient communication be-
tween kernel and application tasks by exporting all kernel
streams to userspace through fast Unix pipes. It renders all

kernel pipes accessible as well as the interconnecting pipeline
structure, through a virtual filesystem.

3. A VIRTUAL FILESYSTEM FOR I/O
PipesFS reuses the filesystem namespace, which is a generic
digraph, to present kernel I/O. Like FIFOs, filesystem-backed
pipes can be resolved by all applications. PipesFS goes one
step further and exploits the private namespace to visual-
ize kernel pipelines as directory hierarchies. Doing so allows
applications to control kernel I/O through existing system
calls, such as mkdir, avoiding the introduction of yet another
API. Likewise, PipesFS makes all data streams between ker-
nel filters accessible from userspace as Unix pipes, so that
applications can access and modify network, audio and video
streams without having to resort to domain-specific inter-
faces. As a result, it becomes trivial, for instance, to log
all requests to our webserver to a compressed archive. For
PipesFS mounted at /pipes the shell command

cat /pipes/.../http/get/all | compress > log.Z

suffices, whereby we abbreviated the path for clarity. This
command reads data produced by an in-kernel get request
filter from that filter’s Unix pipe all. The filter first ac-
quired data from another filter, one for http traffic, which
received it from yet a lower layer. This pipeline continues
until we reach data sources, in this case a network interface.

Modifying a pipeline, for instance to insert a layer 7 protocol
filter after a vulnerability in our webserver is discovered, is
as simple. Moreover, the complex protocol filter does not
have to run in the vulnerable kernel: a userspace program,
which can be as common as grep or sed, can be placed in be-
tween two kernel components. We will return to this exam-
ple and discuss its performance implications shortly. First,
we introduce the filesystem and its components (directories,
pipes and files).

56

3.1 Design
PipesFS is a Linux virtual filesystem with support for nest-
ing, symbolic links and the following special properties: di-
rectories represent kernel filters, pipes present filter in- and
output and a filter’s output is automatically piped to the in-
put of all its children. In other words, data flows downwards
from the root to the leaves.

Directory nodes as filters. Each directory in PipesFS rep-
resents an active filter running in the kernel. PipesFS comes
bundled with more than 20 kernel filters – ranging from pro-
tocol filters to device driver interfaces – and a runtime sys-
tem that controls I/O between filters. The implementation
of kernel filters is similar to that of netfilter elements and
indeed, we could easily integrate those, but at present we
only support homegrown filters.

Pipe nodes as output. As filters deal with sequential I/O,
their data can be represented as pipes. PipesFS exports
each filter’s output through a pipe childnode in the filter
directory. In its most basic form, all output from a filter
/pipes/X can be accessed from the pipe /pipes/X/all. De-
viating from pure bitpipes, PipesFS pipes can be both byte
and record oriented. In the latter case, calls to read and
write return at most the number of bytes in a single record.
This behavior is allowed by Posix standards and is required
to integrate discrete (e.g., network packet) streams.

Because many protocol filters classify contents (e.g., by IP
protocol field), our kernel filters present a 16 bit classifica-
tion number along with each block of data which can be used
in domain-specific ways. For instance, the IP protocol fil-
ter uses it to differentiate between transport-layer protocols.
The runtime system makes each logical substream available
through a private pipe in the subdirectory F/N, for each N
between 0 and 65535. Additionally, the runtime system can
resolve numbers to names, e.g., to replace the lookup for
TCP traffic ip/6 with the more friendly ip/tcp. To make
use of this feature, filters must (statically) register a lookup
table. Symbolic links are then automatically generated.

File nodes as control. All but the most trivial filters take
parameters. In PipesFS, communication between filters and
applications takes place through files. In principle, all files
in a directory are randomly-accessible (as opposed to pipes)
memory regions. Writable control files set parameters, read-
only files are used to communicate metadata to the appli-
cation. Small files copy data during each call, large files
are backed by the same shared memory regions as pipes (to
which we return in the following section) to reduce overhead
of high-throughput communication. Additionally, filters can
manually add metadata pipes, to replace such in-band meta-
data as socket timestamps.

To reduce clutter, the runtime system generates files for
all the filter’s configuration options prepended with a dot.
These names cannot clash with filters, because those may
only have alphanumerical characters in their name.

Nested structures as tasks. To create meaningful appli-
cations, users connect filters into composite graphs through
use of the mkdir, rmdir, link and related Linux system calls.

PipesFS also implements symbolic links, to expand the FS
graph type from a tree into a digraph. Whenever a write call
is issued on a pipe, either from the filter or from a userspace
application, the filesystem intercepts the call and automat-
ically calls all children with the same block of data. This
simple recursive algorithm enables data to reach all depen-
dent nodes in the graph. Because a cycle leads to an infinite
processing loop for nearly all combinations of filters, these
must be avoided. PipesFS does not currently detect cycles.

Root. The filesystem root node, as only exception to the
rule, does not correspond to a filter and does not gener-
ate any output. Instead, for useful processing, children of
the rootnode must generate output without input. Device
drivers are examples of this. Besides these children, the root
has a single file, .available, which lists all the available fil-
ter implementations. mkdir will only succeed with names
from this list.

3.2 Sockets
Like Plan9, we aim to replace domain-specific interfaces with
operations on files. One widely-used such interface is the
socket. Alternative network interfaces, even modular ones,
are as old as sockets themselves [24], but for a long time were
not as efficient. At present, however, we have a number of
reasons to move away from sockets, aside from the obvious
goal of collapsing APIs. First, the interface is complex with
5 calls each for reading and writing data, various types of
in-band metadata messages and an exceptional call, send-
file, for sending file contents. Second, the interface shields
all kernel I/O from applications, so that network operations
(e.g., packet filtering) require additional interfaces and must
operate in kernelspace. Third, unless the kernel implements
sockets in a modular fashion – duplicating Unix pipe func-
tionality –, load balancing network processing across paral-
lel processors is non-trivial. Finally, the cost incurred by
composite network stacks is no longer significant [2]; on the
contrary, we will show in the next two sections, 4 and 5, how
separating transport from processing logic benefits efficiency
by enabling global optimizations to both.

PipesFS replaces socket-specific data access calls (like send

and recvmsg) with basic reading from and writing to pipes,
whereby the location of the pipe identifies the socket. The
actual path for sockets is long, consisting of 8 filters for the
reception end, but users are easily shielded from this com-
plexity through symbolic links (e.g., /pipes/sockets/tcp/N).
Similar to the udev device file system, a userspace daemon
could be written set up such links automatically. Addition-
ally, we replace the control calls connect and bind with
filesystem operations on control files. Currently not sup-
ported are waiting on multiple sockets and connection han-
dling, but both can be implemented using Linux’s file no-
tification infrastructure inotify. In-band messaging is re-
placed with separate metadata pipes.

3.3 Usage
PipesFS filesystem nodes are modified like any other, using
Posix system calls. We discuss both configuration and access
calls.

57

Configuration. Filter instances – a combination of logic
and state – are created using mkdir. During creation, a
filter’s input is immediate connected to the output of its
parent. If parameters need to be set prior to connection,
the filter must be created directly below the rootnode and
moved after initialization. Once created, filters can be freely
moved and copied. Moving a filter (executing the rename

system call on the directory node) closes the input pipe (if
any) and opens the new parent’s output pipe. Copying only
involves a mkdir call and is therefore similar to creation of a
new node. Because a recursive copy operation is not atomic,
input should also be temporarily severed to guarantee con-
sistent state. Moving the source node to the root level for
the duration of the operation achieves this, but must be
manually executed.

Read and write access. PipesFS not only exposes the ker-
nel I/O configuration, it also makes all live I/O streams
accessible from userspace. As the logging example demon-
strated, reading data requires the same actions as reading
from regular pipes. Modifying the contents of an I/O stream
is more involved. To achieve this, a user must sever the
stream – again by moving the child directory to the root
level – and manually forward data from the (former) par-
ent to the child. This entails reading from the output pipe,
applying any required transformation to this data and then
writing it to the input buffer. At this point we continue with
the layer 7 (i.e., deep inspection) protocol filter example that
we introduced at the start of this section. Traditionally, to
filter at this level, all network data must be intercepted and
parsed up to the protocol level, because no hooks in the reg-
ular socket handling code exist to attach to. With transpar-
ent I/O, not only can we move processing out of the kernel
(if we wish, this is not a requirement), protocol processing is
not unnecessarily duplicated. Let’s say we want to drop all
HTTP requests containing the unsafe double-dot (..) nota-
tion before they reach our server. The following shell script
achieves this (albeit crudely):

#!/bin/sh

mkdir /pipes/httpclean

mv /pipes/[...]/http/get /pipes/httpclean/

cat /pipes/[...]/http/all | grep -v ’..’

> /pipes/httpclean/all

3.4 Linux integration
PipesFS has a Linux 2.6 virtual filesystem implementation
that can be downloaded as part of the larger Streamline

package. The complete package implements a reconfigurable
I/O architecture for heterogeneous and distributed systems;
PipesFS exposes the most practical features in such a way
that it naturally fits the Unix model and Linux OS. In its
current implementation, PipesFS still has strong dependen-
cies on other parts of Streamline – specifically on the filter
implementations and fast pipes. The first can be replaced,
at least in part, by Linux netfilter and crypto elements
and fast pipes can initially be eschewed in favor of their ex-
isting copy-based implementations. For high throughput, a
facility similar to our fast (shared memory-based) pipes is
required. We now turn our attention to the implementation
of these pipes.

4. FASTER PIPES
Clear compartmentalization of I/O into userspace and ker-
nel and further into independent processes and kernel sub-
systems as found in Linux today limits throughput, by in-
curring non-essential copying, context switching (both task-
switching and mode transitioning) and as a result cache pol-
lution. This is particularly true for PipesFS, which switches
between compartments frequently. For this reason we re-
place the common pipe with a semantically identical struc-
ture based on shared memory. We have previously pre-
sented these structures, Beltway Buffers, in depth [3]. Here,
we limit discussion to those parts relevant to PipesFS. We
will show that the Beltway Buffers used in PipesFS incorpo-
rate many optimizations that significantly reduce overhead.
Because these optimizations are hidden behind a uniform
POSIX file interface that is used throughout the system,
these optimizations are not only transparent to the user,
but also automatically applied system-wide.

4.1 Shared buffers
Beltway replaces strict data-separation with a system-wide
I/O architecture built from virtually contiguous shared mem-
ory areas, or I/O regions. Regions are statically mapped into
the address spaces of all interested parties: userspace appli-
cations, kernel tasks and occasionally peripheral devices (in
which case they may have to be physically contiguous as
well). Data producers write data into a region once, from
where all consumer access the data locally, i.e., without con-
text switches. Because the data access pattern in streaming
I/O is largely sequential and in principle unbounded, data is
stored as a fixed-length window over a stream. A ring-buffer
is a fixed-length buffer with sequential ordering that wraps
around its container. Shared ring-buffers offer three advan-
tages over competing I/O architectures: (1) they remove all
per-block allocation overhead, (2) they remove most per-
block transport cost, where others must copy data or mod-
ify a VM mapping for each block and (3) they are cheap
to access, because they avoid dynamically allocated linked
structures and keep data packed closely, at the benefit of
locality of reference.

Buffers export the Posix I/O interface (with open, read, etc.
calls). What sets Beltway apart is that these calls are im-
plemented everywhere using local function calls. In other
words, no mode transitions are needed to access stream-
ing I/O. Even in userspace, what are traditionally seen as
system calls are handled in the context of the application,
removing potentially many — because one for each block —
mode transitions. Direct access is a potential breach of pro-
cess isolation, but we will return to this point in section 4.6.

Multiple clients. Beltway Buffers allows parallel consumer
access, but serializes producers. Multi-consumer access re-
places copying. For example, our webserver and logging tool
want to read the same data, so they can share access to the
same buffer. Each client that opens a buffer (using the open

call) gets a private view on the buffer, similar to how each
file open presents a private file offset. No such reason exists
for multiple producers, because all writes occur at the head
of the ring. In Beltway, each client has at least three I/O re-
gions: one private region holding the client’s read offset and
other private metadata such as open flags, one shared region
holding the shared write offset (to which consumers require

58

access for synchronization) and metadata such as buffer im-
plementation type and one large shared region holding the
actual data. Splitting the buffer into disjoint regions has
the additional advantage that it trivially avoid cache con-
flicts due to shared cachelines. The idea is similar to that of
Van Jacobson’s netchannels [12].

Multiple rings. Beltway integrates all buffers into a copy

avoidance network. Ideally, each I/O stream would have its
own ring-buffer; this is infeasible, however, as data would
have to be copied between streams frequently and buffer
setup/teardown cost would dominate tasks with many streams
(such as webservers). Beltway therefore moves all data into
as few shared buffers as possible. Data partitioning is only
performed for one of four reasons: security, multiprocess-
ing, distributed memory and modification. Security in this
context concerns data isolation (e.g., for privacy). We argue
that much more sharing is possible than is currently permit-
ted in Linux. For instance, on a dedicated server, userspace
applications can be granted direct access the network recep-
tion buffer through shared memory. It may even be quite
acceptable to let multiple independent applications access
this buffer (read-only), for instance when the physical net-
work is also unprotected. Multiprocessing performance is
improved when cache conflicts from false data dependencies
are avoided. In the presence of multiple memory areas (e.g.,
on peripheral devices or NUMA nodes), explicit copying of
data once is cheaper than recurring zero-copy access across
high-latency links. Finally, when applications want to mod-
ify data and concurrent claims exist on a stream, a private
copy must be made to avoid data corruption.

4.2 Indirection
To further reduce copying, while allowing private logical

streams, Beltway introduces transparent indirection: a software-
based (and thus unprotected) virtual memory layer that es-
chews hardware isolation to minimize mode switching over-
head and, as a result, is not bound to page sizes. Shared
memory by itself only removes copies across kernel sub-
systems and the application binary interface (ABI); indi-
rection removes additional copies unrelated to such bound-
aries. Such copies occur when reconstructing a stream from
disjoint blocks or when instructed to transfer data from
one file descriptor to another. In the first case, indirec-
tion acts purely as a virtual memory layer, arranging point-
ers to present a contiguous view when there is none. In
PipesFS, we use this feature to avoid copying near-identical
data between parent and child pipes (e.g., to reconstruct
TCP streams from IP packets for our webserver). The sec-
ond case is known as splicing: copy-free movement of data
through the system, which we exploit to cheaply move data
from one pipe through a userspace process (such as the layer-
7 filter presented earlier) to the next.

Beltway fuses independent data buffers, or DBufs, into an
integrated architecture through indirect buffers, or IBufs.
IBufs are also ring-buffers, but instead of data, they contain
small indices that point into DBufs. IBufs export the exact
same interface as DBufs, so that clients can remain unaware
of whether indirection is used. IBufs differ from DBufs in
that instead of returning their buffer contents on a read

they resolve the referenced DBuf and return a data block
from within that buffer. Beltway silently handles “buffer

userspace

kernel

len

index

offset
buffer id index offset classifier

IBuf entry

NIC1

buffer id

DBuf−2DBuf−1

Figure 1: An index points into a DBuf

faults”, situations where a DBuf is not mapped into the lo-
cal memory protection domain, by setting up a long-lived
mapping. After a mapping is made on the first ‘miss’, we in-
cur no more allocation or VM overhead at runtime. During
a write, IBufs both write the index and perform a write-
through operation into a DBuf that acts as backing store.

Indirection is an effective copy-avoidance concept. It is usu-
ally implemented using pointers embedded in queues or heavy-
weight datastructures (e.g., Linux’s sk_buff network packet
structure). IBufs have a few advantages over explicit pointer
access. They centralize indirection, which enables clients to
communicate using the safe and clean Posix file interface
instead of through error-prone pointer handling. More im-
portantly, centralization also enables the I/O architecture
to perform transfer optimizations “under the hood”, auto-
matically, for all applications. Furthermore, IBufs enable
cross-space indirection and copy-avoidance, whereas point-
ers are limited to a single address space. IBufs pack indices
close together, to maximize cache hit-rate. Finally, IBufs
speed up processing by allowing some filters to operate only
on the (cached) index, never touching the data at all.

The index format is important. Indices should be as small as
possible to compress IBufs (and increase cache hit-rate), yet
be expressive enough to be usable for all applications. The
chosen format, shown in Figure 1, combines an address-space
agnostic “rich pointer” into a DBuf with a single metadata
field, known as the classifier. A rich pointer is a 4-tuple of
global DBuf identifier, slot offset within the buffer (if the
implementation has fixed-size slots), block offset within the
slot and length. Clients are free to use the classifier for
domain-specific communication. For instance, a layer-7 pro-
tocol filter uses it to signal the threat level.

4.3 Splicing
Splicing is the copy-free movement of data from one stream
into another. McVoy [17] advocated the introduction of a
splice system call to Linux to allow copy-free movement of
data within the kernel. This call is now part of the mainline
Linux kernel, together with related vmsplice and tee calls.
Beltway implements splicing without the need for new sys-
tem calls and can splice data throughout the system, instead
of limiting itself to userspace control of kernel memory. On
the other hand, Beltway only allows splicing to IBufs, be-
cause splicing is implemented by writing to an IBuf without
performing the write-through to a DBuf. The optimization
is performed below the Posix read and write calls and thus
requires no client support, i.e., it is a transparent, backwards
compatible optimization. For every write operation of suffi-
cient length to an IBuf, the passed pointer is compared to
the address ranges of all known DBufs. If one matches, a
rich pointer is computed from the DBuf implementation and
only this index is written. Because address range matching

59

comes at a cost, write reverts to non-splicing mode if the
hit-rate drops below 80% (i.e., when misses are not rare).

Besides basic splicing, Beltway supports splicing of appli-
cation buffers. One of the drawbacks in terms of perfor-
mance of the Posix interface is that it imposes copy seman-
tics. For applications that mainly move data from one buffer
to another, such as network file servers (e.g., our example
webserver) or PipesFS filters, copying can be the main –
and unnecessary – bottleneck. To splice application buffers,
Beltway keeps an LRU list with pairs of application buffer
pointers as passed to read and the accompanying DBufs
from which data was requested. In the write call it com-
pares the then passed application buffer pointer not just to
DBuf address ranges, but also to this list. If one matches,
data is spliced immediately from the DBuf. This method
is clearly not safe, as it fails to track whether application
buffers were changed in the meantime. Beltway supports two
solutions: either enable the optimization manually through
a flag passed to the open call, or incur a mode-transition
once and revoke write permissions to the application buffer.
Then, if a page-fault occurs due to writing, data is copied
lazily, permissions are reinstated and the buffer is removed
from the LRU list. To avoid the high cost of page-faulting,
the optimization is then also disabled for future read calls
from this process. Splicing achieves copy reductions like the
sendfile system call, but is more generic and transparent.
Our unmodified webserver, for example, benefits from splic-
ing.

4.4 Cache optimization
To maximize I/O throughput, working-sets must be scaled
to an appropriate cache-size (usually L2 [7]). Ring-buffers
lend themselves well to cache-tuning, because they are fixed-
size, contiguous segments, which makes their hit-rate fairly
predictable. On the other hand, because access within a ring
is sequential, even moving one element (byte, slot, block)
beyond a cache size will result in consistent misses, as each
next element will be the last accessed and therefore first
to be evicted. We observed a sharp four-fold decrease in
throughput by only barely exceeding the L2 size [3].

For this reason, Beltway integrates two methods for auto-
matic attuning to cache-size. Both are based on runtime
resizing, but their implementation differs. The true resiz-
ing buffer takes a cue from rehashing: it allocates a mem-
ory area of 2 times its current size, if a pressure value ex-
ceeds either a high watermark when the producer wraps.
Instead of wrapping, the producer then continues writing in
the new region. Similarly, if the pressure value drops be-
low a low watermark, it allocates and writes into a buffer of
half the original size. Pressure is a weighted moving aver-
age of the distance between producer and consumer(s). The
other method, pseudo-resizing, does not allocate a new block
but moves an internal boundary – similar to how a deck of
cards is cut – and releases the unused portion, e.g., to the
diskcache. Which method is appropriate for a given situa-
tion depends on the number of expected resizing operations.
True resizing is a more expensive operation, but conserves
more memory in the end.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000

M
B

ps

Bytes per call

posix
pthread

16KB
64KB

256KB
1MB
4MB

Figure 2: Evaluation of pipes

4.5 Selective buffering
Even though all streams are accessible in principle, in prac-
tice PipesFS avoids buffering for the many unused pipes.
Only when a pipe is explicitly opened by an application is
data written to a buffer. Conversely, buffering stops and the
IO region is destroyed when the last user closes its end. In
the fast common case, pointer forwarding replaces buffering
and filter execution takes the form of direct function calling.

4.6 Security
Beltway offers the same level of isolation as traditional Posix
implementations. Like files, buffers have a personal access
control policy with different rules for user, group and others.
If required, one can also restrict sharing to a single process.
Access control is performed once per buffer and memory
protection domain pair: when a buffer is initially mapped
into the memory protection space. We discuss access control
in more detail elsewhere [3].

Shared memory I/O allows us to selectively relax data isola-
tion where doing so is safe and improves performance. Tra-
ditional copy-based system calls enforce isolation stringently
and consistently. Beltway Buffers, on the other hand, can
reconsider isolation utility on a case-by-case basis when the
interface does not prescribe isolation. Sharing data is a se-
curity concern, but also advantageous to performance as it
save many copies and context switches. In many situations
in which isolation is now enforced, it is done so unnecessar-
ily. Strict isolation is necessary is multiuser environments,
but one can question privacy concerns on dedicated work-
stations and servers. Moreover, any data that is freely acces-
sible outside of the confines of the I/O architecture, such as
that stored in globally readable files or transferred over pub-
lic network links need not be protected by the kernel. For
example, if our webserver executes on a dedicated server,
mapping the reception DBuf into the server process space
causes no direct privacy concerns; neither does mapping the
transmission descriptor rings.

4.7 Performance
The presented architecture reduces copying, context switch-
ing and cache pollution by switching to shared memory and
indirection universally and by organizing memory to maxi-
mize cache hit-rate. Pipes that do not introduce data (un-
like, for example, device drivers) are implemented using
IBufs and both these and the underlying DBufs are mapped
into all applicable memory protection domains. Beltway

60

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000T
hr

ou
gh

pu
t (

M
B

ps
, l

og
sc

al
e)

callsize (B)

p/o
fast p/w

r/o
fast r/w

p/w
r/w

Figure 3: Evaluation of copy-avoidance

increases cache hit-rate by minimizing size of and closely
packing metadata structures, by avoiding false data depen-
dencies on multiprocessors and by scaling memory areas to
cache size.

We summarize the results of comparing Beltway directly to
stock Linux 2.6.19 [3]. Observed throughput improvements
are 2x for pipes, mainly due to a reduction in task switching,
up to 10x for packet capture, for the same reason, and 3x
to 30x for copy avoidance at network packet sizes. Figure 2
shows pipe throughput. Linux (with 64kB buffer) is slowest,
a pthread application that uses explicit shared memory in-
stead of pipes and threads instead of processes is more than
twice as fast and a well tuned Beltway Buffer is within 10%
of this result. Figure 3 shows the impact of copy-avoidance:
the two slowest method use copying both on read and write,
the two middle elements are approximately 3x as efficient by
only incurring a copy on read and the two fastest methods,
which only access indices, and are again a decimal order of
magnitude more efficient.

4.8 Linux integration
Shared memory I/O, indirection, splicing and buffer attun-
ing to cache size improves I/O throughput independently
of the I/O VFS. Indeed, Linux already incorporates some
of these optimizations, but only in selected situations. The
PF_PACKET socket can setup a large, contiguous shared ring-
buffer similar to a single Beltway Buffer, recent Linux kernels
export a splice interface and Glibc 2.3 transparently switches
to memory mapped file I/O when doing so increases sequen-
tial fread performance [5]. Beltway Buffers makes such op-
timizations more generally available, but can be introduced
on a case-by-case basis – for instance, starting as a Unix
pipe implementation.

5. ANYCORE PROCESSING
Application portability has long been a strong point of Unix.
For a large part, this is due to the fact that the interface is
hardware independent: instead of exposing physical device
details, the OS communicates through abstract concepts,
such as processes, files and pipes.

Anycore architectures pose three challenges to writing effi-
cient portable applications: parallelism, heterogeneity and
diversity. Hardware is increasingly parallel, but few ap-
plications scale to exploit this. Those that do commonly
use multi-threading or multi-processing based on clone or
fork and therefore cannot incorporate heterogeneous cores.
Moreover, processor number and kind differ from one ma-
chine to the next, rendering architectural optimization at

compile-time untenable. Instead, structural decisions have
to be made at runtime, based on locally available CPU,
memory and peripheral hardware availability.

In principle, pipelines can solve both the parallelization and
heterogeneity issue for streaming I/O applications, at run-
time. Composite pipelines map trivially onto diverse sets of
distributed resources and because of the simple interface be-
tween filters, can combine heterogeneous elements. We have
built I/O applications for anycore processors using Stream-
line, the reconfigurable architecture on top of PipesFS that
we briefly introduced in section 3.4. Like similar systems [8,
13, 22]) we initially targeted network applications and for
this purpose integrated two generations of network proces-
sors, the Intel IXP1200 and IXP2xx0. The IXPs have one
CPU complemented by 6 or more simple RISC processors
that execute without OS. Having applications automatically
make use of such hardware when available requires run-
time resource discovery, selection, allocation and configura-
tion (such as firmware loading). Streamline automates these
tasks behind the PipesFS interface.

5.1 Heterogeneity
Current operating systems do not integrate heterogeneous
hardware transparently (i.e., behind the ABI), but expose
all physical details directly to the application. Moreover,
they lack even a generic interface for exposing these details:
device drivers export their own, mutually incompatible, ver-
sions. Linux support for the Cell BE and Intel IXP2xx0 is
representative. For both processors the OS exports mainly a
firmware loading interface, but the two versions are incom-
patible: one is a VFS, the other uses sysfs.

Streamline takes a different approach and presents the ab-
stract, task-oriented, PipesFS interface. Whereas PipesFS
as discussed in section 3 maps requests immediately onto
kernel filters and fails if no implementation exists, Stream-
line adds a layer of indirection: it models the computer ar-
chitecture as a digraph of execution spaces (OS kernel tasks,
IXP co-processors, etc.) and for each type of space maintains
a library of filter implementations. For each filter request,
Streamline searches through the set of libraries, selects an
implementation and allocates resources of the required type.
A greedy selection algorithm gives results acceptable for
most situations with little overhead. The current algorithm
prioritizes spaces as follows: prefer a dedicated resource
(such as the IXP2850’s cryptographic engine), else a special-
purpose programmable core (such as the IXP’s RISC pro-
cessors), else run as part of the OS controlled pipeline. We
call the general guideline “push processing down”.

The process is simple in principle, but substantial support
logic is required to hide all hardware details, especially for
configuration. Example tasks are passing an initialization
vector (IV) to the cryptographic unit, loading firmware onto
co-processors or even compiling high-level languages into
firmware. For this reason Streamline also supports metafil-

ters: operations that are selected by the greedy algorithm
even before dedicated cores, and perform a support opera-
tion that expands the algorithm’s search space. For example,
the metafilter aes prepares the IXP2850 cryptographic unit,
rewrites the original request aes into ixpcrypt and reinserts
the request. As a result of request reinsertion, metafilter re-

61

quests are stackable. On a programmable co-processor with-
out cryptographic unit, such as the Intel IXP2400, the aes

filter first compiles into object code and then loads onto the
co-processor.

A separate case study discusses our implementation of regu-
lar expressions on an IXP2400 [10]. This work presents the
network processor to Linux as a ‘normal’ Ethernet card with
additional configuration options (the regex rules). On regu-
lar NICs, Streamline must execute regex filters in the kernel,
but if this card is encountered, it can offload both the net-
work and regular expression functionality to the card. After
configuring the device, the filter becomes part of the PipesFS
structure and users may connect it to other filters by calling
mkdir, and access its in- and output through UNIX pipes,
as if it were running on the host.

5.2 Parallelism
Pipelining also aids I/O application scheduling on parallel
homogeneous hardware. As we discussed in the introduc-
tion, I/O applications are commonly memory-bound. Pres-
sure on the memory system can be reduced by maximizing
cache efficiency. This, in turn, is achieved by executing tasks
that access the same data near in time and space: in the
same timeslots on processors that share an L2 or L3 cache.
Pipelines facilitate cache-aware scheduling because they ren-
der the data dependencies between filters explicit. We are
currently building an assembly line scheduler for PipesFS
that optimizes I/O throughput (not CPU utilization) by
keeping filters closely synchronized in terms of throughput
and by optimizing the mapping of adjoining filters onto suc-
cessive timeslots and neighboring CPUs for diverse numbers
of cores [4].

5.3 Linux integration
PipesFS and the Streamline reconfiguration layer are both
implemented as modifications to Linux 2.6, but especially
the latter is far removed from current Linux practice. Still,
some lessons can be backported quite easily. Linux already
exports task-oriented interfaces from its device filesystem.
For instance, /dev/random is a common interface for ob-
taining pseudo-random numbers and /dev/audio for reading
raw digital audio. Both present a streaming interface similar
Unix pipes. This practice can be extended to include com-
mon cryptographic (e.g., aes, hash128), media (mp3dec),
network (regex, csum) and other (compress) streaming op-
erations that applications prefer to offload because they are
computationally intensive and fairly independent of other
code.

When the operating system is responsible for these critical
operations, it can replace kernel implementations with faster
alternatives when available. To support programmable re-
sources, the OS must maintain a library of filter implemen-
tations for each local architecture. The implementation can
be similar to /lib/firmware, only specialized for each pro-
cessor type. Streamline’s greedy algorithm then reverts to a
keyword search through the various firmware directories.

Moving nodes from the device filesystem to PipesFS, finally,
combines hardware offload with cache-aware scheduling on
anycore architectures and with the more general advantages
discussed in section 3. It enables communication between

filters that execute on fast co-processors (e.g., the Cell SPUs)
without interference from application logic scheduled on a
CPU.

6. RELATED WORK
PipesFS is not the first virtual filesystem for I/O. Linux

implements pipes through pipefs. That is not a generic
filesystem, however, as it cannot be mounted and makes no
use of nesting. Plan9 introduces a VFS for network streams
to reach its design goal that ”everything is a file” [23]. Like
PipesFS, this replaces sockets with filesystem operations
(and both avoid introducing network namespaces [21]), but
only PipesFS expands into a generic I/O pipeline through
nesting.

With other interfaces, pipelines have been proposed before
for performance critical I/O processing. Streams [24] is the
first practical example – and still widely deployed. The
interface is not nearly as popular as sockets, however, at
least in part due to lower performance. The x-Kernel [11],
Scout [18] and the Click router [14] are more efficient descen-
dants. Scout is even available as a linux patch [2]. What sets
PipesFS apart is that it cleanly combines an existing I/O
interface (Unix pipes) and operating system (Linux) while
increasing performance over the standard configuration.

PipesFS implements copy avoidance, similar to container
shipping [20], fbufs [6] and IO-Lite [19]. All approaches
reduce copying, but PipesFS additionally reduces context
switch and cache miss overhead by moving to large shared
memory areas. Our buffer implementation is based on asyn-
chronous rings, like netchannels [12] and we employ signal
throttling, similar to clocked interrupts [25] and Linux’s
NAPI network device interface. Unlike IO-Lite, PipesFS
cannot splice to the diskcache. On the other hand, it sup-
ports more generic application splicing [17], like recent Linux
kernels. Unlike the Linux implementation, PipesFS does not
introduce a new API.

7. CONCLUSIONS
We have presented PipesFS, a Linux virtual filesystem that
structures all kernel I/O as a pipeline, presents this to ap-
plications as a nested directory structure and makes all live
data accessible through Unix pipes. Performing all I/O
through this single primitive improves code reusability and
maintainability and benefits application performance, by in-
troducing transport and processing optimizations systemwide.
PipesFS increases pipe throughput by between 2x and 30x
through copy, context switch and cache miss avoidance and
demonstrates that Unix pipelines are a simple, yet powerful,
abstraction for building applications that scale from unipro-
cessor to anycore architectures.

Acknowledgments
We would like to thank Patrick G. Bridges for commenting
on earlier versions of this paper.

8. REFERENCES
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: a view

62

from berkeley. Technical Report UCB/EECS-2006-183,
Electrical Engineering and Computer Sciences,
University of California at Berkeley, December 2006.

[2] A. Bavier, T. Voigt, M. Wawrzoniak, L. Peterson, and
P. Gunningberg. Silk: Scout paths in the linux kernel.
Technical report, Uppsala University, 2002.

[3] W. de Bruijn and H. Bos. Beltway buffers: Avoiding
the os traffic jam. In INFOCOM 2008, 2008.

[4] W. de Bruijn and H. Bos. Model-t: rethinking the os
for terabit speeds. In Workshop on high-speed networks

(HSN 2008), Co-located with INFOCOM, 2008.

[5] U. Drepper. Gnu c library version 2.3. In UKUUG

Linux Developers’ Conference, 2002.

[6] P. Druschel and L. L. Peterson. Fbufs: A
high-bandwidth cross-domain transfer facility. In
Symposium on Operating Systems Principles, pages
189–202, 1993.

[7] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Throughput-oriented scheduling on chip
multithreading systems. Technical Report TR-17-04,
Harvard University, August 2004.

[8] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N.
Bershad. Spine: a safe programmable and integrated
network environment. In EW 8: Proceedings of the 8th

ACM SIGOPS European workshop on Support for

composing distributed applications, pages 7–12, New
York, NY, USA, 1998. ACM Press.

[9] M. Gancarz. The UNIX philosophy. Digital Press,
Newton, MA, USA, 1995.

[10] T. Hruby, K. van Reeuwijk, and H. Bos. Ruler:
high-speed packet matching and rewriting on npus. In
ANCS ’07: Proceedings of the 3rd ACM/IEEE

Symposium on Architecture for networking and

communications systems, pages 1–10, New York, NY,
USA, 2007. ACM.

[11] N. C. Hutchinson and L. L. Peterson. The x-kernel:
An architecture for implementing network protocols.
IEEE Transactions on Software Engineering,
17(1):64–76, 1991.

[12] V. Jacobson and B. Felderman. A modest proposal to
help speed up & scale up the linux networking stack.
http://www.linux.org.au/conf/2006/

abstract8204.html?id=382, 2006.

[13] S. Karlin and L. Peterson. Vera: an extensible router
architecture. Computer Networks (Amsterdam,

Netherlands: 1999), 38(3):277–293, 2002.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM

Transactions on Computer Systems, 18(3):263–297,
2000.

[15] G. Kroah-Hartman. Lkml discussion on rate of kernel
changes, Feb 2008. http://kerneltrap.org/
mailarchive/linux-kernel/2008/2/2/700024.

[16] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn.
Efficient operating system scheduling for
performance-asymmetric multi-core architectures. In
Proceedings of Supercomputing’07, 2007.

[17] L. McVoy. The splice I/O model.
www.bitmover.com/lm/papers/splice.ps, 1998.

[18] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L.
Peterson, T. A. Proebsting, and J. H. Hartman. Scout:

A communications-oriented operating system. In
Operating Systems Design and Implementation, 1994.

[19] V. S. Pai, P. Druschel, and W. Zwaenepoel. Io-lite: a
unified i/o buffering and caching system. ACM

Transactions on Computer Systems, 18(1):37–66, 2000.

[20] J. Pasquale, E. W. Anderson, and K. Muller.
Container shipping: Operating system support for
i/o-intensive applications. IEEE Computer,
27(3):84–93, 1994.

[21] R. Pike, D. Presotto, K. Thompson, H. Trickey, and
P. Winterbottom. The use of name spaces in Plan 9.
Operating Systems Review, 27(2), 1993.

[22] I. Pratt and K. Fraser. Arsenic: A user-accessible
gigabit ethernet interface. In INFOCOM, pages 67–76,
2001.

[23] D. Presotto and P. Winterbottom. The organization of
networks in Plan 9. In USENIX Association.

Proceedings of the Winter 1993 USENIX Conference,
pages 271–280 (of x + 530), Berkeley, CA, USA, 1993.
USENIX.

[24] D. M. Ritchie. A stream input-output system. AT&T

Bell Laboratories Technical Journal, 63(8):1897–1910,
1984.

[25] C. B. S. Traw and J. M. Smith. Hardware/software
organization of a high-performance ATM host
interface. IEEE Journal on Selected Areas in

Communications (Special Issue on High Speed

Computer/Network Interfaces), 11(2):240–253, 1993.

[26] W. A. Wulf and S. A. McKee. Hitting the memory
wall: Implications of the obvious. Computer

Architecture News, 23(1):20–24, 1995.

63

