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Abstract
Energy consumption has recently been widely recognized as a ma-
jor challenge of computer systems design. This paper explores how
to support energy as a first-class operating system resource. En-
ergy, because of its global system nature, presents challenges be-
yond those of conventional resource management. To meet these
challenges we propose the Currentcy Model that unifies energy ac-
counting over diverse hardware components and enables fair al-
location of available energy among applications. Our particular
goal is to extend battery lifetime by limiting the average discharge
rate and to share this limited resource among competing tasks ac-
cording to user preferences. To demonstrate how our framework
supports explicit control over the battery resource we implemented
ECOSystem, a modified Linux, that incorporates our currentcy
model. Experimental results show that ECOSystem accurately ac-
counts for the energy consumed by asynchronous device operation,
can achieve a target battery lifetime, and proportionally shares the
limited energy resource among competing tasks.

1. INTRODUCTION
Traditionally, the operating system plays two important roles.

First, it provides a convenient set of abstractions of the raw hard-
ware devices to application programs (e.g., a filesystem on top of a
raw disk, virtual memory from physical memory). Second, the op-
erating system allocates available system resources among compet-
ing applications to achieve target goals such as fairness or relative
prioritization.

Today, available energy, as embodied by the system battery,
plays an increasingly important role in the utility of many comput-
ing environments, from laptops and PDAs to emerging platforms
such as wireless sensor networks. Despite wide-spread recognition
of the importance of energy, operating systems currently do not
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provide application developers a convenient abstraction of the en-
ergy resource. There have been broad efforts to better manage the
energy use of individual devices, for example, CPU voltage scal-
ing [24, 25, 13, 33, 12, 9, 27, 26], disk spindown policies [21, 7, 6,
19, 14], power aware page allocation [20, 5], and energy-aware net-
working [18, 31]. However, there has been relatively little attention
to managing energy as a first-class system resource and explicitly
allocating it among competing applications.

Thus, the goal of this work is to develop a unifying set of ab-
stractions for managing existing system resources under the um-
brella of energy. One of the major contributions of our work is the
introduction of an energy accounting framework based on acur-
rentcy model1 that unifies resource management for different com-
ponents of the system and allows energy itself to be explicitly man-
aged. Unifying resource management has often been mentioned as
a desirable goal, but a focus on energy provides a compelling mo-
tivation to seriously pursue this idea. Energy has a global impact
on all the components of any hardware base. In our framework,
applications can spend their share of energy on processing, on disk
I/O, or on network communication - with expenditures on different
hardware components represented by a common model. A unified
model makes energy use tradeoffs among hardware components
explicit.

In general, there are two problems to consider at the OS-level
for addressing specific energy-related goals. The first is to develop
resource management policies that eliminate waste or overhead and
make using the device as energy efficient as possible. An example
is a disk spindown policy that uses the minimal energy whenever
the disk is idle. This traditional approach to power management has
typically been employed in a piecemeal, per-device fashion. We be-
lieve our currentcy model provides a framework to view such algo-
rithms from a more systemwide perspective. The second approach
is to change the offered workload to reduce the amount of work
to be done. This is the underlying strategy in application adapta-
tion where the amount of work is reduced, often by changing the
fidelity of objects accessed, presumably in an undetectable or ac-
ceptably degraded manner for the application user [10]. One of
the strengths of our approach is that, while providing abstractions
that can facilitate such application involvement, it can also accom-
modate unmodified applications without requiring them all to be
rewritten to become energy-aware. Without relying on application-
based knowledge, other ways of reducing workload demands must
be found. Our currentcy model provides a framework to express
policies that selectively degrade the level of service to preserve en-

1Currentcy is a coined term, combining the concepts of current
(i.e., amps) and currency (i.e., $).



ergy capacity for more important work.

Observing that battery lifetime can be expanded by limiting the
discharge rate [22, 28], we consider mechanisms to enable the de-
velopment of energy management policies for controlling the dis-
charge rate to meet a specified battery lifetime goal. The first level
allocation decision is to determine how much currentcy can be allo-
cated to all the active tasks in the next time interval so as to throttle
to some target discharge rate. Essentially, this first-level alloca-
tion determines the ratio of active work that can be accomplished
to enforced idleness that offers opportunities to power down com-
ponents. Then, the second level decision is to proportionally share
this allocation among competing tasks.

We have implemented an OS prototype—called ECOSystem—
incorporating these energy allocation and accounting mechanisms.
Experiments demonstrate that the system accurately accounts for
asynchronous device operation and that the overall energy alloca-
tion can achieve a target battery lifetime. Furthermore, we show
that simple policies for proportional sharing serve to distribute the
performance impact of limiting the average discharge rate among
competing tasks in a user-specified manner.

The remainder of this paper is organized as follows. In the next
section, we outline the underlying assumptions of this work. In
Section 3, we present the currentcy model and the design of the
currentcy allocator. In Section 4, we describe the prototype imple-
mentation and in Section 5, we present the results of experiments
to assess the benefits of this approach. Section 6 discusses areas
where architectural enhancements could simplify our design. We
discuss related work in Section 7 and then conclude.

2. BACKGROUND AND MOTIVATION
2.1 Battery Characteristics

Battery lifetime is an increasingly important performance met-
ric, encompassing conventional mobile computing and emerging
systems, such as distributed wireless sensor networks. Typically,
users and system designers face a tradeoff between maximizing
lifetime and traditional performance measures such as throughput
and response time. Depending on the scenario, the goal might be to
have the battery last just long enough to accomplish a specified task
(e.g., finish the scheduled presentation on the way to the meeting)
or a fixed amount of work (e.g., viewing a DVD movie). Thus, met-
rics have been proposed to capture the tradeoff between the work
completed and battery lifetime [23]. Alternatively, the work might
not be fixed, but an acceptable quality of service is desired for as
long as possible (e.g., signal processing on a sensor node and ad
hoc routing for other nodes).

Fortunately, simple battery models, such as Peukert’s equa-
tion [22, 28], are available that adequately relate battery lifetime
to factors we can control. Specifically, given parameter values de-
scribing the particular battery technology in use, we can calculate a
limit on the current or power consumption that, if enforced, should
result in reaching a target battery lifetime. In trying to achieve a
given discharge rate, the first challenge is to accurately determine
the level of resource consumption for all subcomponents over time.

One recent development in the OS-directed management of the
battery resource is theSmart Batteryinterface in the ACPI speci-
fications [15] and compatible battery devices that support it. This
interface allows the system to query the status of the battery, includ-
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Figure 1: Accounting challenges of multiple devices and pro-
cesses

ing the present remaining capacity, present drain rate, and voltage.
The Smart Battery seems to be a potentially powerful tool in sup-
port of energy management. However, our investigations of exist-
ing Smart Battery capabilities reveals limitations for our purposes.
The operation of querying the interface is too slow to be useful for
gathering power consumption data at a sufficiently fine grain for
resource management functions such as scheduling without intro-
ducing unacceptable overhead. In addition, the averaging of power
consumption data returned by the query makes attributing an accu-
rate power consumption value to a particular process problematic,
even with only the CPU involved. We ran experiments with two
synthetic benchmarks that individually produce a distinct, stable
power consumption profile showing that when they are scheduled
together, the reported power values cannot be differentiated be-
tween the two competing processes. Even if better battery-related
data were available, other accounting issues would remain related
to accurately attributing power/energy usage, as described in the
next subsection.

2.2 Energy Resource Accounting Challenges
OS-level energy management can be split across two dimen-

sions. Along one dimension, there are a wide variety of devices
in the system (e.g., the CPU, disks, network interfaces, display)
that can draw power concurrently and are amenable to very differ-
ent management techniques. This motivates a unified model that
can be used to characterize the power/energy consumption of all of
these components. In the other dimension, these devices are shared
by multiple applications. The power usage of two simultaneously
active hardware components may be caused by two different appli-
cations. For example, the disk may be active because of an I/O op-
eration being performed by a “blocked” process while another pro-
cess occupies the CPU. This presents additional accounting chal-
lenges. Consider the scenario portrayed in Figure 1 involving three
different processes and three different resources (CPU, disk, and
wireless card). During the highest levels of power consumption,
process 0’s disk activity, process 1’s network usage, and CPU pro-
cessing by any one of the three processes all contribute. Using
a program counter sampling technique, based on time as in Power-
Scope [11] or energy consumption [3], would inaccurately attribute
power costs to the wrong processes.

Solving the accounting problem is a prerequisite to managing
the battery resource. This involves (1) understanding the nature
and determining the level of resource consumption, (2) appropri-
ately charging for use of the various devices in the system, and (3)
attributing these charges to the responsible entity. We introduce the



currentcy model to coherently charge for the energy consumption
of many asynchronously active devices and we adaptresource con-
tainers[1] to serve as the abstraction to which energy expenditures
are charged. The following section elaborates on our unified energy
model.

3. THE CURRENTCY MODEL
The key feature of our model is the use of a common unit—

currentcy—for energy accounting and allocation across a variety of
hardware components and tasks. Currentcy becomes the basis for
characterizing the power requirements and gaining access to any of
the managed hardware resources. It is the mechanism for estab-
lishing a particular level of power consumption and for sharing the
available energy among competing tasks.

One unit of currentcy represents the right to consume a certain
amount of energy within a fixed amount of time. The subtle differ-
ence between a unit of currentcy and a guarantee for an equivalent
x Joules of energy is a time limit on use of the currentcy. This has
the desired effect of pacing consumption.

Incorporating a generalized energy accounting model within
the operating system provides the flexibility necessary to uniformly
support a range of devices. The model can be parameterized ac-
cording to the specific power characteristics of the host platform.
With existing hardware support, there is no alternative that can pro-
vide the information about the power consumption of individual
components needed for accounting. A side-effect of embedding
this model in the system is that it also makes it possible to vary
assumptions about the system’s power budget to emulate alterna-
tive device characteristics. Thus, while our target environment uses
energy in a certain fashion, we can also design experiments based
on the profile of a PDA where the CPU and display power costs
are significantly reduced and the hard drive may be eliminated al-
together.

The remainder of this section describes the overall structure of
our energy model and how currentcy can be credited to tasks and
debited upon resource use to achieve a given battery lifetime.

3.1 System Energy Model
The system power costs are characterized in two parts of our

model: The first part is thebasepower consumption that includes
the low power states of the explicitly energy-managed devices as
well as the default state of the devices not yet being considered. The
larger the proportion of the system that gets included in the base
category, the less opportunity there will be to affect improvements
on top of it. While our experimental prototype with 3 managed
devices (i.e., the CPU, disk, and network) is adequate to demon-
strate our ability to unify multiple components under the currentcy
model, the base remains a large, static factor in the range of dis-
charge rates we are able to produce on the laptop. Thus, we are
interested in investigating how changing this aspect of the power
budget may affect the behavior of the energy allocation strategies
we propose.

The second part of the system model is the specification of the
costs of the more active states for each of the explicitly managed
devices. Thus, the halted state of the CPU and the spun-down state
of the disk fall into the base while CPU activity and spinning the
disk are explicitly modeled. Each of these higher power states is
represented by a charge policy that specifies how currentcy is to be

deducted to pay for use of the target component.

The level of detail in this part of the model depends on the in-
formation that is available to the OS and the management choices
available to it. The status of the device must be visible to the
OS—either in terms of state information or as observable transition
events that cause higher power use—to allow tracking of the state.
Our current prototype is very coarse-grained (e.g., CPU halted or
active) but the model can support finer-grain information such as
using event counters to track processor behavior as suggested by
Bellosa [2]. Our system could also benefit from component spe-
cific “gas gauges” that accurately measure energy consumption.

3.2 Currentcy Allocation
Our overall goal is to achieve a user-specified battery lifetime

by limiting the discharge rate. There are two facets to the allocation
strategy. The first level allocation determines how much currentcy
can be made available collectively to all tasks in the system. We di-
vide time into energy-epochs. At the start of each epoch, the system
allocates a specific total amount of currentcy. The amount is deter-
mined by the discharge rate necessary to achieve the target battery
lifetime according to our battery formula. By distributing less than
100% of the currentcy required to drive a fully active system during
the epoch, components are idled or throttled. There are constraints
on the accumulation of unspent currentcy so that epochs of low de-
mand do not amass a wealth of currentcy that could result in very
high peaks in the future. The second aspect of currentcy allocation
is its distribution among competing tasks. When the available cur-
rentcy is limited, it is divided among the competing tasks according
to user-specified proportions. During each epoch, an allowance is
granted to each task according to its specified proportional share of
currentcy.

Our model utilizes resource containers [1] to capture the ac-
tivity of an application or task as it consumes energy throughout
the system. Resource containers are the abstraction to which cur-
rentcy allocations are granted and the entities to be charged for en-
ergy consumed by the devices they use. They are also the basis
for proportional sharing of available energy. Resource containers
deal with variations in program structure that typically complicate
accounting. For example, an application constructed of multiple
processes can be represented by a single resource container for the
purposes of energy accounting.

3.3 Currentcy Payback
Our initial resource management is based on a pay-as-you-go

policy whereby a resource container gains access to a managed de-
vice. Consider the CPU – the process scheduler will allow ready
processes to run as long as their associated resource containers have
currentcy to pay for the time slice. When there are no processes
whose resource containers have any remaining currentcy left, even
though they may be otherwise ready to run, the processor is halted
until the next allocation. Similarly, I/O operations that cause disk
activity result in currentcy being deducted from the associated re-
source container. In this way, energy tradeoffs become explicit.
Currentcy spent on I/O is no longer available to pay for CPU cy-
cles.

Each managed device has its own charging policy that reflects
the costs of the device. For example, the disk policy may try to
spread out the payments for spinup or for spinning during the time-
out period prior to spindown. The base costs are not explicitly



charged to resource containers, but obviously factor into the overall
target power consumption. As we continue to develop the system,
elements will migrate from the base into the category of explicitly
managed and modeled devices.

The currentcy model provides the framework necessary to ex-
press a variety of energy-conscious policies ranging from CPU
scheduling to disk management. Our implementation of one set of
initial policies is described in Section 4. This allows us to demon-
strate the feasibility of the currentcy model, to gain experience with
the system, and to identify problems that motivate future research.
We are actively exploring the rich design space of policies that can
be formulated in the currentcy model [35].

4. PROTOTYPE
We implemented our currentcy model in the Linux operating

system running on an IBM ThinkPad T20 laptop. This section de-
scribes our prototype implementation, called ECOSystem for the
Energy-Centric Operating System. First, we provide a discussion
of the specific power consumption values that are used to parame-
terize our model for the various hardware components in the T20.
In Section 5.5, we examine the effects of changing these values to
represent alternative platforms (e.g., PDA).

4.1 Platform Power Characteristics
We obtain the power characteristics of our Thinkpad hardware

and use the resulting values as parameters to the currentcy model
within the ECOSystem kernel. Within ECOSystem, we currently
model three primary devices – CPU, disk, and network interface
– by using microbenchmarks and measuring the actual power con-
sumption with a Fluke multimeter. All other devices contribute to
the base power consumption, measured to be 13W for the platform.

CPU
The CPU of our laptop is a 650MHz PIII. We use a coarse-

grained abstraction that assumes that the CPU draws a fixed amount
of power (we currently use 15.55 W) for computation. This was es-
tablished by measuring the power while running a loop of integer
operations. Ideally, one would like to charge differently for dif-
ferent processor behavior (e.g., various types of instructions or the
frequency of cache misses, etc.) and this would be compatible with
our modeling approach (e.g., by using event counters [2, 17]).

Disk
Many of today’s hard disks support the ATA interface which

uses a timeout based power management scheme to spin down an
idle disk. The ATA standard defines a set of power states and the
interface to control the timeout value for each state. Unfortunately,
the hard disk in our laptop, an IBM Travelstar 12GN, has more
power states than the ATA standard and these state transitions are
managed by an unknown internal algorithm that cannot be manipu-
lated through the ATA interface. This complicates hard disk energy
accounting since it prevents the OS from knowing the true power
state of the disk. Therefore, we approximate our disk’s power con-
sumption using a timeout based model derived from typical hard
disks. Table 1 shows the values used in our model. It is well known
that the energy cost to spinup the disk is high. In our case, we also
observe that the power consumption increases when the IBM Trav-
elstar tries to spin down the disk and we set the spindown cost to
a fairly large value of 6000mJ. The disk model is set to spin down

Cost Time Out (Sec)
Access 1.65mJ/Block
Idle 1 1600mW 0.5
Idle 2 650mW 2
Idle 3 400mW 27.5

Standby (disk down) 0mW N/A
Spinup 6000mJ

Spindown 6000mJ

Table 1: Hard disk power state and time-out values

after 30 seconds. To achieve comparable effects on timing, we also
set the Travelstar to spin down after 30 seconds.

Wireless Network Interface
The network interface used in our system is an Orinoco Silver

wireless PC card that supports the IEEE 802.11b standard. This
card can be in one of three power modes: Doze (0.045W), Re-
ceive (0.925W), and Transmit (1.425W). IEEE 802.11b supports
two power-utilization modes: Continuous Aware Mode and Power
Save Polling Mode. In the former, the receiver is always on and
drawing power, whereas in the latter, the wireless card can be in
the doze mode with the access point queuing any data for it. The
wireless card will wake up periodically and get data from the base
station. In the Power Save Polling Mode, the wireless card con-
sumes a small fraction of the energy compared to the Continuous
Aware Mode and most of the power is consumed by sending or re-
ceiving data for the user application. In the ECOSystem prototype,
we always use the Power Save Polling Mode with the maximum
sleep time set to 100 milliseconds (the default sleep time).

According to 802.11b, data retransmission may occur at the
MAC layer as the result of data corruption. Data retransmission can
consume additional energy invisible to the OS and can affect the
accuracy of our energy accounting. In our tests, we enable the op-
tional Request-to-Send/ Clear-to-Send (RTS/CTS) protocol at the
MAC layer for transmissions larger than 1024 bytes to reduce the
chance of collision. The MTU is 1500 bytes in our system.

4.2 The ECOSystem Implementation
We modified RedHat Linux version 2.4.0-test9 to incorporate

energy as a first-class resource according to the model described
in Section 3. Our changes include our own implementation of re-
source containers [1] to support the two dimensions of our model:
energy allocation and energy accounting. Below we elaborate on
the kernel modifications associated with each of these dimensions.

4.2.1 Currentcy Allocation
ECOSystem supports a simple interface to allow the user to

manually set the target battery lifetime and to prioritize among
competing tasks2. These values are translated into appropriate units
for use with our currentcy model (one unit of currentcy is valued at
0.01mJ). The target battery lifetime is used to determine how much
total currentcy can be allocated in each energy epoch. The task
shares are used to distribute this available currentcy to the various
tasks.

2We use the terms “task” and “resource container” interchangeably.
One or more processes may comprise a task.



To perform the per-epoch currentcy allocation, we introduce a
new kernel threadkenrgdthat wakes up periodically and distributes
currentcy appropriately. We empirically determine that a one sec-
ond period for the energy epoch is sufficient to achieve smooth en-
ergy allocation. If a task does not use all its currentcy in an epoch,
it can accumulate currentcy up to a maximum level (which is pro-
portional to 10 times a task’s per epoch share), beyond which any
extra currentcy is discarded.

4.2.2 Currentcy Accounting
Tasks expend currentcy by executing on the CPU, performing

disk accesses or sending/receiving messages through the network
interface. The cost of these operations is deducted from the appro-
priate container. When the container is in debt (available-currentcy
� zero) none of the associated processes are scheduled or otherwise
serviced. The remainder of this section explains how we perform
energy accounting for the CPU, disk, and network card.

CPU
In our current implementation, a process is scheduled for ex-

ecution only if its corresponding resource container has currentcy
available. We modified the Linux scheduler to examine the appro-
priate resource container before scheduling a process for execu-
tion. Our CPU charging policy is based on a hybrid of sampling
and standard task switch accounting. Accounting at a task switch
provides accurate accounting of processor time used. However, to
prevent long-running processes from continuing to run with insuf-
ficient currentcy, we deduct small charges as the task executes.
If the task runs out of currentcy during its time-slice, it can be
preempted early. Thus, we modify the timer interrupt handler to
charge the interrupted task for the cost of executing one tick of
the timer. In our system, a timer interrupt occurs every 10ms and
the appropriate resource container’s currentcy will be reduced by
15,550 units (155.5mJ). Under this policy, all tasks expend their
currentcy as quickly as possible during a given energy epoch. This
approach may produce bursty power consumption and irregular re-
sponse times for some applications. We are currently developing
a proportional scheduler that will more smoothly spread the cur-
rentcy expenditure throughout the entire energy epoch [35].

Hard Disk
Energy accounting for hard disk activity is very complex. The

interaction of multiple tasks using the disk in an asynchronous
manner makes correctly tracking the responsible party difficult.
Further complexities are introduced by the relatively high cost of
spinning up the disk and the large energy consumption incurred
while the disk is spinning. We have implemented a reasonable ini-
tial policy to address this complexity. However, further research is
clearly necessary.

To track disk energy consumption, we instrument file related
system calls to pass the appropriate resource container to the buffer
cache. The container ID is stored in the buffer cache entry. This
enables accurate accounting for disk activity that occurs well after
the task initiated the operation. For example,write operations can
occur asynchronously, with the actual disk operation performed by
the I/O daemon. When the buffer cache entry is actually written
to disk, we deduct an amount of currentcy from the appropriate
resource container. Energy accounting forread operations is per-
formed similarly.

We can break disk cost into four categories: spinup, access,
spinning, and spindown. The cost of an access is easily computed
by active�state�power�cost(W )

disk�access�bandwidth(KB=s)
�buffersize(KB). The energy

consumed to access one buffer on disk is 1.65mJ on our platform.
Since a dirty buffer cache entry may not be flushed to disk for some
time, multiple tasks may write to the same entry. Our current policy
simply charges the cost of the disk access to the last writer of that
buffer. While this may not be fair in the short-term, we believe the
long-term behavior should average out to be fair. The remaining
disk activities present more difficult energy accounting challenges.

The cost of spinning up and down the disk is shared by all tasks
using the disk during the session defined by the period between
spinup and spindown. It is charged at the end of the session and
is divided on the basis of the number of buffers accessed by each
task. It is also possible that the disk can just keep spinning. In this
case if the disk has been up for over 90 seconds, the cost is charged
at this moment and shared by all tasks that have been active over
the last 90 seconds. We assume that spinup or spindown takes 2
seconds and that the average power is 3,000mW, leading to a total
energy cost of 6,000mJ.

The cost for the duration of time that the disk remains spin-
ning waiting for the timeout period to expire (30 second minimum)
is shared by those tasks that have recently accessed the disk (in
essence, those that can be seen as responsible for preventing an
earlier spindown). This is done by incrementally charging the tasks
that have performed accesses within the last 30 second window in
10ms intervals (timer interrupt intervals). On each timer interrupt,
if the disk is spinning, the energy consumed during this interval,
as determined by the disk power state and length of the interval
(10ms), is shared among those tasks active in the last 30 seconds.

Our present implementation does not handle all disk activity. In
particular, inode and swap operations are not addressed. The swap
file system has its own interface and does not follow the vnode to
file system to file cache to block-device hierarchy. For our reported
results, such activity constitutes only a small fraction of overall disk
activity (as reflected by the overall accuracy of our achieved energy
allocation).

Network Interface
Energy accounting for the network interface is implemented in

ECOSystem by monitoring the number of bytes transmitted and
received. These values are then used to compute the overall energy
consumption according to the following equations:

Esend = (sent bits � transmit power)=bit rate
Erecv = (received bits � receive power)=bit rate:

The energy consumption is calculated at the device driver ac-
cording to the full length of the packet including the header. We
have instrumented the socket structure and the TCP/IP implemen-
tation to track the task responsible for a particular network access.
When a socket is created for communication, the creator’s con-
tainer ID is stored in the socket. For each outgoing packet, the
source socket and hence the associated source task is identified at
the device driver. For an incoming packet, the energy consumption
for receiving the packet is computed and initially stored with the
packet when it is received. The destination socket of this packet
will be available after it is processed by the IP layer. Currentcy
is deducted from the destination task at this moment. If packets



are reassembled in the IP layer, the energy cost of the reassem-
bled packet is the sum of all fragmented packets. We believe that
our approach with TCP/IP connections can also be applied to other
types of protocols such as UDP/IP and IPV6. In IPV6, the destina-
tion socket may be available before being processed by the IP layer
which can ease our job of task tracking.

5. EXPERIMENTS AND RESULTS
This section presents experimental results using our prototype

implementation. Our goal in this paper is to use ECOSystem to
demonstrate that the unified currentcy model provides the frame-
work necessary to manage energy as a first class resource. We be-
gin by presenting our methodology. Then, we present a sequence
of experiments designed to validate ECOSystem’s energy account-
ing and allocation. A more extensive analysis of the policy design
space created by the currentcy model is the focus of our ongoing
research. We conclude this section by demonstrating the generality
of the currentcy model by investigating alternative platforms.

5.1 Experimental Methodology
We use a combination of microbenchmarks and real applica-

tions to evaluate our framework. The microbenchmarks enable tar-
geted evaluation of various system components. The real applica-
tions we use are netscape, x11amp, and ijpeg from the SPEC95
suite. The primary metrics are battery lifetime and application per-
formance.

For each of our applications, we define an evaluation metric
that we believe correlates with user-perceived performance. We
measure application performance for various combinations of tar-
get lifetime and relative priorities. Our first application, netscape, is
representative of an entire class of interactive applications where a
user is accessing information. The performance metric for netscape
is the time required to complete the display of a web page. We as-
sume the page must be read from the network and that the netscape
file cache is updated, so all three of our managed devices are in-
cluded (CPU rendering, disk activity, and a network exchange). We
obtain values for the performance metric by measuring the aver-
age duration of CPU activity for events (e.g., loading a web page).
For netscape, we insert 5 seconds between page requests to model
the user’s think time. The think time has the effect of allowing
some amount of currentcy to accumulate between events. Our next
application, x11amp, is an MP3 player. This is representative of
a popular battery-powered application with user-perceived quality
constraints. Since each song has a specific play time, we evalu-
ate this application’s performance by measuring any slowdown in
playback. This is done by comparing the actual time to complete
the song against the length of the song. Any slowdown in playback
manifests itself as disruption (e.g., silence) in the song. The final
application, ijpeg, is computationally intensive and representative
of digital image processing. The performance metric for ijpeg is
execution time or processor utilization.

5.2 Energy Accounting
We begin by validating the energy accounting advantages of the

unified currentcy model. For this experiment we use three synthetic
benchmarks to exercise the disk, network and CPU, respectively, in
well-defined and recognizable ways. The disk benchmark (DiskW)
does little computation and writes 4KB of data to the disk every
four seconds. The kernel daemon will flush these dirty buffers ev-
ery 5 seconds and thus keeps the disk continually spinning. DiskW

is the only one of the three benchmarks designed to touch the disk.
The network benchmark (NetRecv) also performs very little com-
putation, but continuously receives data at the maximum bandwidth
of the network. NetRecv is the only one of our benchmarks in-
volved in wireless communication. The final benchmark is a CPU-
only batch job (Compute) capable of running continuously. We ex-
ecute the three benchmarks simultaneously for 548 seconds. By de-
sign, NetRecv should be considered responsible for consuming at
least .925 mW in the NIC (the cost of receiving) and DiskW should
be considered wholly responsible for approximately 620 mW in the
disk (averaging power states idle1, idle2, and idle3 from Table 1
over the 5 second flushing interval) for the duration of the exper-
iment. Thus, DiskW should consume approximately 338,760 mJ
just for the disk and NetRecv should consume 506,900 mJ just for
the NIC by “back of the envelope” calculations. Similarly, we esti-
mate that Compute, if run in a stand-alone fashion, should consume
no more than 8,521,400 mJ (at 15.55 W).

We collect energy accounting data from ECOSystem’s cur-
rentcy model. For comparison, we emulate a program counter
sampling technique within ECOSystem by charging all disk and
network activity to the resource container of the task occupying the
CPU at each observation.

Table 2 shows the energy accounting results for both the unified
currentcy model and the program counter based technique. Note
that in the program counter sampling approach only the Total col-
umn would be reported, however we show the breakdown by device
as captured by the model to illustrate the source of any discrepan-
cies. These results match our expectations – the program counter
approach does not attribute the energy consumption to the appro-
priate tasks. The Total energy consumption values for DiskW and
NetRecv is significantly lower than their consumption for the disk
and network devices alone and Compute is assigned a higher Total
consumption. In contrast, ECOSystem appears to more accurately
charge each task for its specific device utilization. The ECOSystem
results reflect the engineered-in behaviors of these synthetic bench-
marks. Although for this experiment the CPU dominates power
consumption, alternative platforms with a lower power processor
or an application that doesn’t fully occupy the CPU will decrease
the CPU power component and increase the relative error of pro-
gram counter sampling techniques.

5.3 Targeting Battery Lifetime
Achieving a target battery lifetime is an essential design objec-

tive of ECOSystem. Several potential sources of error exist in the
energy accounting that could cause our behavior under the model
to deviate from the target battery lifetime. For example, variations
in cache behavior that are not captured by our flat CPU charge may
introduce error in our lifetime estimate. One remedial approach
involves making periodic corrections. By obtaining the remaining
battery capacity via the smart battery interface once every 30 sec-
onds, our system can take corrective action by changing the amount
of currentcy allocated in subsequent energy epochs. If we appear
to be under charging, then the overall currentcy allocation can be
reduced. If it appears that we are over charging, then currentcy
allocation can be increased.

To investigate the impact of energy accounting inaccuracies, we
use our CPU intensive microbenchmark, but deliberately introduce
accounting error for the CPU power consumption (14W instead of
the measured 15.55W). Figure 2 shows the target battery lifetime
for our platform on the x-axis and the achieved battery lifetime un-



App Currentcy Model Program Counter Sampling Error
CPU(mJ) HD(mJ) Net(mJ) Total(mJ) CPU(mJ) HD(mJ) Net(mJ) Total(mJ) (mJ)

DiskW 430 339,319 0 339,749 430 16 24 470 339,279
NetRecv 256,571 0 553,838 810,409 256,571 9,235 20,206 286,012 524,397
Compute 8,236,729 0 0 8,236,729 8,236,729 326,404 531,789 9,094,922 858,193

Table 2: Energy Accounting: Unified Currentcy Model vs. Program Counter Sampling
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Figure 2: Achieving Target Battery Lifetime

der a variety of conditions on the y-axis. One set of points is plotted
along they = x line that represents perfectly matching the lifetime.
One curve demonstrates the behavior of the system without correc-
tion, in this case continuously missing the target battery lifetime
by approximately 10%. Finally, another curve on the graph shows
that with our periodic corrections, we are able to achieve the target
despite the deliberately introduced error.

5.4 Sharing Limited Energy Allocation
Having demonstrated the ability to achieve a target lifetime, the

more important question involves proportionally allocating avail-
able energy among competing tasks. We validate the proportional
sharing by running ijpeg and netscape simultaneously, and explor-
ing a range of proportional currentcy allocations that represent user
preference for interactive performance versus background compu-
tation performance.

At one extreme ijpeg is the higher priority task and receives the
most currentcy. This represents a scenario where there is a com-
putationally intensive application the user wants to run (e.g., image
processing for a marketing presentation), but while it is running the
user also wishes to browse the web3. At the other end of the spec-
trum, the user places higher priority on interactive performance.

Table 3 shows the effects of sharing limited energy resources.
Our battery is rated at 3.6Ah and 10.8V. In this experiment we set
the battery lifetime goal at 2.16 hours, obtaining an overall average

3This could also represent a sensor network scenario with a high
priority computation (e.g. signal processing) and low-priority net-
working (e.g., ad hoc routing) task that should not dominate sensor
network lifetime by unnecessarily draining the battery of a single
node.

discharge rate of 5W. Each row in the table represents a different
partitioning of this 5W between the two tasks. If the tasks ran un-
constrained they would draw approximately 16W and the battery
would last only 1.3 hours. Note that with a 5W total allocation and
a 15.55W processor, ijpeg would only receive 30% of the CPU even
if it were allocated 100% of system energy.

Our results show that, as we modify the allocation of energy
between the two tasks, each task closely matches the target alloca-
tion. While ijpeg is largely CPU bound, netscape does make use of
all three modeled system components, CPU, disk, and the network.
ECOSystem is able to match netscape’s total power consumption
across these three devices to the target power allocation. It is also
interesting to note the non-linear relationship between power allo-
cated to netscape and page load times. Doubling the power from
1.5W to 3.0W, reduces the page load time by approximately a fac-
tor of 4. Increasing power allocation by an additional 33% to 4W
effects another factor of 2 reduction in average page load times.
This result suggests a “knee in the curve” for interactive applica-
tions such as netscape, where additional power allocation beyond a
certain point is unlikely to have a significant impact on the overall
user-perceived “quality of service”. For the CPU-intensive ijpeg
application on the other hand, there is a direct linear relationship
between the power allocated to the application and the amount of
CPU time that it receives.

Our experiments thus far demonstrate that the unified currentcy
model provides the framework necessary to: 1) accurately account
for asynchronous energy consumption, 2) achieve a target battery
lifetime by limiting the average discharge rate, and 3) proportion-
ally share the limited currentcy allocation across competing tasks
according to user specified allocations. However, an important as-
pect of any operating system abstraction is its ability to support new
or different hardware devices.

5.5 Generality of the Currentcy Model
The currentcy model provides a powerful framework that can

easily transfer to different hardware platforms. Supporting a differ-
ent platform simply requires changing the model’s device parame-
ters. Adding new types of devices requires the appropriate kernel
modifications to include the device in the resource container ab-
straction.

In this section, we utilize the flexibility of our model to emulate
an entirely different platform. Such an emulation is most accurate
when the power characteristics change without significant timing
changes (e.g., as lower power processors are introduced that are
capable of matching the host platform’s speed [4]). Recognizing
this limitation, we wish to investigate a hypothetical platform that
is representative of a future PDA-like device with a 2W processor,
0.02W base power, and MEMS-based storage. Our MEMS storage
power characteristics are based on those presented by Schlosser et
al [30]. An access costs 0.112mJ, transitioning to active mode costs



Energy Share ijpeg Netscape
Power Ave Power CPU Power Ave Power Page Load

Alloc(W) Used(W) Util(%) Alloc(W) Used(W) Latency(sec)

70%:30% 3.5 3.507 22.55% 1.5 1.49 29.205
60%:40% 3.0 3.008 19.34% 2.0 2.006 17.441
50%:50% 2.5 2.500 16.08% 2.5 2.457 9.928
40%:60% 2.0 2.008 12.91% 3.0 2.961 6.322
30%:70% 1.5 1.503 9.67% 3.5 3.443 3.934
20%:80% 1.0 1.005 6.46% 4.0 3.663 3.032

Table 3: Proportional Sharing: ijpeg vs. netscape, 5W Total Energy

5mJ and transitioning back to standby mode costs 0mJ. We assume
the energy to remain active is 100mW, and the timeout to standby
mode is 50ms. We use the same charging policy as in our hard disk
model. For these experiments we use a 3.7Ah battery.

Consider the scenario where a PDA user is listening to music
but also wishes to browse the web with the wireless network card.
In this case the user wants the battery to last a specified amount
of time and is willing to tolerate increased delays in web access to
avoid annoying gaps in the song’s playback. Note that this situation
is similar to a sensor network scenario where there is a primary
computation task (e.g., detecting a target) and a low priority task
(e.g., ad hoc routing or data fusion).

Table 4 shows the results of sharing the available currentcy be-
tween the MP3 player (x11amp) and netscape for various amounts
of available currentcy. X11amp requires 80mW to ensure contin-
uous playback, the remaining capacity is available for netscape.
These results show that as we increase the battery lifetime from
about 9 hours (600mW allocation) to over 25 hours (200mW
allocation) x11amp always receives its required energy, while
netscape’s portion decreases. The cost of this decreased energy
allocation is an increase in response time from the minimum 3.12
seconds for a 9 hour lifetime to over 30 seconds for the 25 hour
lifetime. In another test, if we run x11amp and ijpeg together un-
constrained, these two applications would consume approximately
2.4W and the battery would last only 2.3 hours, but we can still
achieve the uninterrupted playback and target battery lifetime with
our approach (constraining ijpeg’s CPU time appropriately).

These results show how the currentcy model can be modified to
emulate alternative platforms by simply changing device parame-
ters. An important observation from these results is that improve-
ments in device power consumption increase both the need and the
opportunity for operating system managed energy.

6. SYSTEM ARCHITECTURE RECOM-
MENDATIONS

Our experience with ECOSystem exposed several opportuni-
ties for architectural support that could simplify or improve op-
erating system development. As shown in the previous section,
our approach of including a relatively simple model is sufficient
to support managing energy as a first class resource. The recom-
mendations provided below are primarily targeted at simplifying or
streamlining the implementation.

The current model utilizes platform characteristics obtained
through measurement of microbenchmarks exercising specific sys-
tem components (e.g., disk, CPU, network). This makes it cumber-
some to port the currentcy model to different platforms. To ease

this transition, the platform architecture could provide support to
monitor the energy consumption of each system component. For
example, by exporting the appropriate interface, the disk controller
could inform the operating system of the exact power consumed to
perform specific accesses.

Operating systems would also benefit from obtaining precise
information about the current state of a device. The ACPI interface
dictates that all device power states are operating system controlled.
However, the IBM disk drive used in our tests follows the philoso-
phy that devices are better managed by local algorithms that exploit
information not observable to the operating system. Unfortunately,
often the internal algorithms are unknown to the operating system
and thus the OS is unable to predict the disk behavior. We believe
that if devices are locally managed they should provide information
about their current power state so the operating system can incorpo-
rate that information into its policy decisions. An interesting area
of future work is exploring collaborative disk power management.

It is possible that new operating system policies will increase
the disk start/stop cycles, thus reducing reliability. In this case, it
is imperative that disk manufacturers further increase the minimum
allowable start/stop cycles. IBM’s load/unload technology is an
example of a technique to extend disk durability.

7. RELATED WORK
Attention to the issues of energy and power management is

gaining momentum within operating systems research. Recent
work has made the case for recognizing energy as a first-class re-
source to be explicitly managed by the operating system [8, 32].

Work by Flinn and Satyanarayanan on energy-aware adaptation
using Odyssey [10] is closely related to our effort in several ways.
Their approach differs in that it relies on the cooperation of appli-
cations to change the fidelity of data objects accessed in response
to changes in resource availability. The goal of one of their ex-
periments is to demonstrate that by monitoring energy supply and
demand to trigger such adaptations, their system can meet spec-
ified battery lifetime goals before depleting a fixed capacity and
without having too much residual capacity at the end of the desired
time (which would indicate an overly conservative strategy). They
achieve a 39% extension in lifetime with less than 1.2% of initial
capacity remaining. For their approach, the performance tradeoff
takes the form of degraded quality of data objects.

There has been previous work on limiting CPU activity lev-
els, in particular for the purpose of controlling processor tempera-
ture, via the process management policies in the operating system.
In [29], the operating system monitors processor temperature and
when it reaches a threshold, the scheduling policy responds to limit



Target Total x11amp Netscape
Lifetime(h) Power Power Ave Power Playback Power Ave Power Page Load

(mW) Alloc(mW) Used(mW) Time(sec) Alloc(mW) Used(mW) Latency(sec)

25.23 200 80 77 300 120 119 31.345
17.34 300 80 76 300 220 219 13.62
13.21 400 80 78 300 320 314 8.31
10.67 500 80 77 300 420 417 4.698
8.95 600 80 78 300 520 489 3.12

Table 4: Extending Battery Lifetime on an Alternative Platform: We assume a 2W CPU and MEMS disk, a base power of 0.02W, with a
3.7Ah battery and an operating voltage of 1.5v. The base power is 0.02W

activity of the “hot” processes. A process is identified as “hot” if it
uses the CPU extensively over a period of time. As long as the CPU
temperature remains too high, these hot processes are not allowed
to consume as much processor time as they would normally be en-
titled to use. This work only considers the power consumption of
the CPU as opposed to our total system view. This strategy was
implemented in Linux and results show that power constraints or
temperature control can be successfully enforced. The performance
impact is selectively felt by the hot processes which are likely not
to be the foreground interactive ones.

The idea of performing energy-aware scheduling using a throt-
tling thread that would compete with the rest of the active threads
has been proposed by Bellosa [2]. The goal is to lower the aver-
age power consumption to facilitate passive cooling. Based upon
his method of employing event counters for monitoring energy use,
a throttling thread would get activated whenever CPU activity ex-
ceeded some threshold. When the throttling thread gets scheduled
to run, it would halt the CPU for an interval.

The term “throttling” (which we have used in a very gen-
eral sense) is most often associated with the growing literature on
voltage/clock scheduling [24, 25, 13, 33, 12, 34, 16, 9, 27, 26]
for processors that support dynamic voltage scaling. Here, the
“scheduling decision” for the OS is to determine the appropriate
clock frequency / voltage and when changes should be performed.
Interval-based scheduling policies track recent load on the system
and scale up or down accordingly. Task-based algorithms associate
clock/voltage settings with the characteristics (e.g. deadlines, peri-
odic behavior) of each task.

The body of literature on power/energy management has been
dominated by consideration of individual components, in isolation,
rather than taking a system-wide approach. Thus, in addition to the
CPU-based studies mentioned above, there have been contributions
addressing disk spindown policies [21, 7, 6, 19, 14], memory page
allocation [20, 5], and wireless networking protocols [18, 31]. The
emphasis is most of this work has been on dynamically managing
the range of power states offered by the devices. This work is com-
plementary to our currentcy model and will impact the charging
policies for such devices in our framework.

8. SUMMARY AND CONCLUSIONS
The utility of emerging computing environments is increasingly

limited by available energy rather than raw system performance. To
date, there have been many efforts to limit the energy usage of spe-
cific hardware devices. We believe, however, that energy must be
explicitly managed as a first-class system resource that cuts across
all existing system resources, such as CPU, disk, memory, and the
network in a unified manner. Thus, we propose a unifying abstrac-

tion to integrate power management into the two traditional tasks of
the operating system, hardware abstraction and resource allocation.
This allows the OS to reason about the overall energy behavior of
an application on a platform-specific basis and to potentially extend
the useful lifetime of the system for unmodified applications.

We offer the following contributions to this emerging research
field. First, we propose a Currentcy Model that unifies diverse hard-
ware resources under a single management framework and demon-
strate its applicability to a variety of platforms. Next, we implement
a prototype energy-centric operating system, ECOSystem, that in-
corporates our model and demonstrates techniques for explicit en-
ergy management with a total system point of view. We apply this
system toward the specific problem of proportionally allocating re-
sources among competing applications. Our framework provides
a testbed for formulating various resource management policies in
terms of currentcy. Finally, we use our framework to explore the
complex interactions of energy conservation, allocation, and per-
formance by running experiments with real and synthetic bench-
marks on our prototype.
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